

ASX ANNOUNCEMENT

ASX: DEV | ACN: 009 799 553

Large-scale, 12km long mafic-ultramafic intrusion at Sovereign Project, paving way for ground EM and initial diamond drilling

Expanded air-core drilling program continues to reveal a differentiated intrusion with similar geology to the upper part of the Gonneville Intrusion

HIGHLIGHTS

- Air-core drilling continues to define a layered, differentiated mafic-ultramafic intrusion at Sovereign, extending over 12 kilometres in length.
- The Sovereign Intrusion is interpreted to be flat lying, with geology consistent with the upper portion of the Julimar mafic-ultramafic intrusion, as seen on the western edge of Chalice Mining's Gonneville Intrusion.
- The reconnaissance air-core drilling has provided an insight into the underlying, more prospective, ultramafic portion of the intrusion in several areas along its 12km strike length.
- An extensive ground electromagnetic (EM) survey is planned to commence next month over the larger intrusion to map conductors beneath the gabbro.
- In parallel with the ground EM survey, stratigraphic diamond drilling is also planned to test the geometry of the ultramafic beneath the upper gabbroic rocks into the more ultramafic portion of the intrusion.

DevEx Resources (ASX: DEV, "DevEx" or "the Company") is pleased to report encouraging results from an additional 318 holes (8,456m) from its expanded reconnaissance air-core drilling program at the Sovereign Ni-Cu-PGE Project in Western Australia.

The drilling is continuing to map the prospective mafic-ultramafic intrusion, extending the strike to at least 12km in length and providing information on the potential framework of the intrusion.

Elevated palladium + platinum (PGE), multielement geochemistry and petrology are all consistent with the upper portions of a layered differentiated mafic-ultramafic intrusion, ranging from leuco-gabbros, to mela-norites, gabbronorites and olivine pyroxenite (metamorphic equivalent)

These rocks are likely analogous to the western margin of Chalice Mining Limited's Gonneville Intrusion where gabbronorite and pyroxenite rocks form the upper differentiated layer with the lower, more Ni-Cu-PGE rich, serpentinite (harzburgite) beneath.¹

At Sovereign, DevEx has yet to drill beneath the upper differentiated mela-gabbronorite and pyroxenite to determine the position of any lower serpentinite that could occur beyond the pyroxenite layer.

www.devexresources.com.au

The difference is that the Gonneville Intrusion appears to be folded onto its side so exposing the lower Ni-Cu-PGE rich serpentinite at surface. By contrast, the Sovereign mafic-ultramafic Intrusion is currently interpreted to be flatter lying, with the more prospective ultramafic rocks (serpentinite) lying beneath the pyroxenite and mela-gabbronorite.

This interpretation is supported by several windows of mela-gabbronorite and pyroxenite seen within the intrusion and rimmed by elevated palladium and platinum (PGE) and lithologies consistent with the upper differentiated portion of the intrusion.

A review of the previous Airborne EM (AEM) survey and limited ground follow-up undertaken by the Company's geophysical consultants, Newexco Pty Ltd, found that the AEM survey would have been depth restrictive and therefore unlikely to have tested the full vertical extent of the prospective intrusion, including the more prospective ultramafic which may underly the gabbroic rocks. As a result, Newexco has recommended that a more extensive programme of ground EM is required to effectively test for massive sulphide Ni-Cu-PGE mineralisation with priority given to several windows where the lower ultramafic and mela-gabbronorites have been exposed near surface.

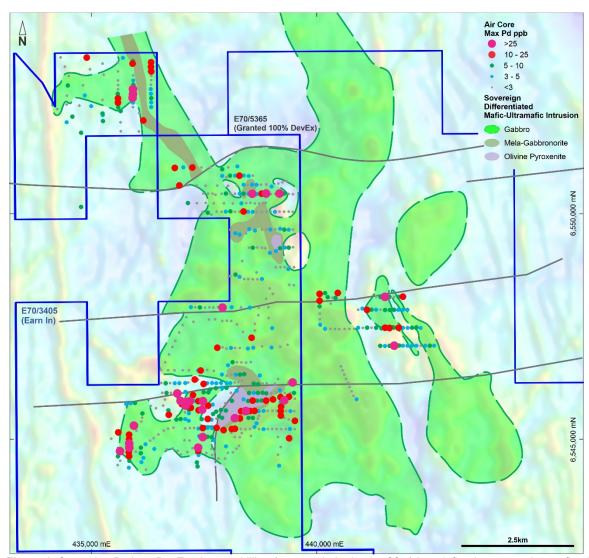
In conjunction with these ground EM surveys, diamond drilling is also planned to understand the geometry and extent of the intrusion beneath the upper gabbroic rocks.

DevEx is currently exploring the western half of the Sovereign mafic-ultramafic Intrusion (E70/3405) under an Earn-In Agreement with Australian Silica Quartz Group Ltd ('ASQ') (see the Company Announcement on 1st June 2020). The eastern half of the intrusion is located within a granted tenement held by DevEx (E70/5365).

Large Scale	Air-core drilling and magnetics continues to define the Sovereign Intrusion over 12km in strike	✓
Right Rocks	Range of rocks consistent with upper portions of differentiated maficultramafic intrusion	✓
Right Age	Metamorphism of mafic-ultramafic rocks suggestive of Archaean age to the Sovereign Intrusion	✓
Well Positioned	Significant occurrences of Ni-Cu-PGE mineralisation discovered within mafic-ultramafic intrusions north and south of the Sovereign Intrusion at Gonneville ¹ and Yarabrook Hill ²	✓

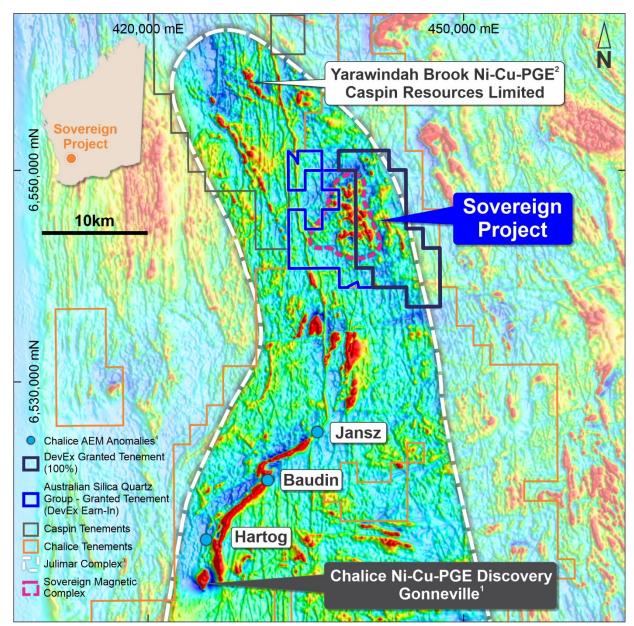
Management Comment

Commenting on the latest results, DevEx Managing Director, Brendan Bradley, said: "These are very encouraging developments for our exploration campaign at Sovereign and we now feel more confident that we are systematically peeling back the geological layers and forming a clearer picture of the exciting exploration opportunity in front of us.


"Apart from the sheer scale of the intrusion at 12km in length, the important data being generated by the air-core drilling have provided us with windows into the more prospective intrusion below the overlying gabbroic rocks.

"This has provided us with a clear picture of what to do next, which will include ground EM surveys over the most prospective areas to define potential accumulations of sulphide mineralisation and drilling of some selected stratigraphic diamond holes to give us a clearer picture of the geology, dimensions, orientation and geometry of the Intrusion.

"We are very encouraged by the progress of our exploration at Sovereign, and we feel that we are getting much closer now to making the all-important exploration breakthrough that we are all striving to achieve on behalf of our shareholders."



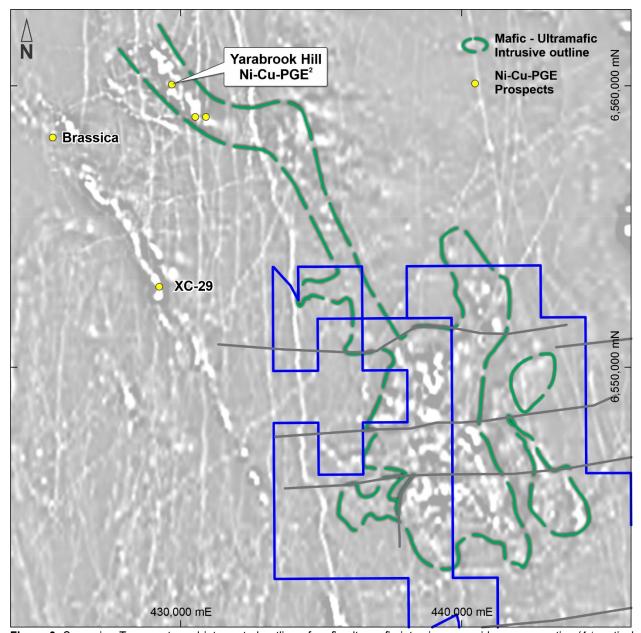

Figure 1. Sovereign Project: DevEx air-core drilling (average hole depth ~26m) has defined an extensive mafic-ultramafic intrusion over 12km long with several windows of underlying metamorphosed pyroxenite and mela-gabbronorite rimmed by elevated palladium and platinum. The shape of the intrusion is interpreted from air-core drilling (incl bottom of hole multielement geochemistry), petrology and magnetics. The Company is currently planning an expanded ground EM survey, with stratigraphic diamond drilling to test the intrusion beneath the pyroxenite.

Figure 2. DevEx Tenement together with the Australian Silica Quartz Group Ltd ('ASQ') Tenement overlying airborne magnetics (RTP) in relation to Chalice Mining Limited's high-grade palladium-nickel discovery (ASX: CHN) at the Julimar Project. The outline of the Julimar Complex was interpreted by the Company from information in Harrison (1984)³.

Figure 3. Sovereign Tenements and interpreted outline of mafic-ultramafic intrusion over airborne magnetics (1st vertical derivative) in relation to Caspin Resources Limited's (ASX: CPN) Yarabrook Hill Ni-Cu-PGE Prospect.

Next Steps

Planning is now underway for an extensive ground EM survey to commence next month. The survey is designed to test for conductors associated with Ni-Cu-PGE mineralisation beneath the effective range of the previous Airborne EM and overlying gabbroic rocks.

As the survey is likely to take several months to complete, priority will be given to several areas where the lower pyroxenite and mela-gabbronorites have been exposed near surface. Prospective EM conductors identified as this survey progresses will be fast tracked to diamond drilling.

In conjunction with these ground EM surveys, diamond drilling is also planned to test the geometry and extent of the intrusion beneath the upper gabbroic rocks.

This planning will be supported by additional modelling of the regional gravity data.

Results, and a more enhanced geological understanding, are expected to assist with definition of priority targets within the broader differentiated mafic-ultramafic intrusion which will pave the way for an expanded ground electromagnetic (EM) survey and subsequent RC/diamond drilling in the coming months.

This announcement has been authorised for release by the Board.

Brendan Bradley Managing Director

For further information, please contact:

Brendan Bradley, Managing Director DevEx Resources Limited Telephone +61 8 6186 9490 For media inquiries, please contact:

Nicholas Read Read Corporate Telephone: +61 8 9388 1474

REFERENCES

- 1. Chalice Mining Limited (ASX: CHN) ASX announcement "Twelfth High-Grade Zone Defined at Julimar" on 3rd August 2021"
- Caspin Resources Limited (ASX: CPN) ASX announcement "Broad Sulphide Zones Intersected at Yarabrook Hill" on 24th May 2021.
- 3. Harrison P. H., 1984. The mineral potential of layered igneous complexes within the Western Gneiss Terrain. In: Professional papers for 1984 of the Geol Surv of W. A. 19. Gov Printing Office, Perth, pp 37–54.
- 4. Chalice Gold Mines Limited (ASX: CHN) ASX announcement "Major new 6.5km-long EM anomaly identified at Julimar" on 22nd September 2020.

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Results is based on information compiled by DevEx Resources Limited and reviewed by Mr Brendan Bradley who is the Managing Director of the Company and a member of the Australian Institute of Geoscientists. Mr Bradley has sufficient experience that is relevant to the styles of mineralisation, the types of deposits under consideration and to the activities undertaken to qualify as a Competent person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Bradley consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

The Information in this report that relates to Exploration Results for the Sovereign Project is extracted from the ASX announcement titled "Drilling confirms anomalous palladium, platinum and copper associated with a mafic-ultramafic intrusion at the Sovereign Project, WA" released on 27th April 2021 which is available at www.devexresources.com.au.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FORWARD LOOKING STATEMENT

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Appendix 1.

Hole_ID	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
HOIE_ID	(m)	mE	mN	(m)	ppm	ppm	ppb	ppb	ppb
21SVAC254	34	442644	6547054	266	63	110	3	3	6
21SVAC255	26	442547	6547055	264	230	42	5	9	14
21SVAC256	53	442447	6547055	262	191	640	4	5	9
21SVAC257	23	442348	6547055	260	80	126	1	3	4
21SVAC258	14	442248	6547055	258	106	71	4	5	9
21SVAC259	10	442148	6547055	257	92	81	3	3	6
21SVAC260	15	442048	6547055	258	58	47	3	3	6
21SVAC261	16	441948	6547055	259	58	59	4	7	11
21SVAC262	33	441864	6547059	263	66	66	5	8	13
21SVAC263	13	441752	6547056	264	216	81	37	21	58
21SVAC264	29	441647	6547053	265	49	31	7	5	12
21SVAC265	29	441546	6547049	263	75	180	4	3	7
21SVAC266	27	441441	6547052	260	195	114	5	3	8
21SVAC267	64	442342	6547450	257	158	279	4	3	7
21SVAC268	51	442249	6547465	258	281	418	6	7	13
21SVAC269	16	442151	6547455	261	132	91	7	9	16
21SVAC270	13	442052	6547452	263	18	24	3	3	6
21SVAC271	28	441948	6547454	264	98	872	3	3	6
21SVAC272	27	441850	6547455	267	248	81	18	7	25
21SVAC273	17	441744	6547457	269	51	109	5	3	8
21SVAC274	11	441647	6547451	270	86	36	20	6	26
21SVAC275	55	441548	6547455	269	88	133	17	7	24
21SVAC276	38	441248	6547455	266	43	48	1	3	4
21SVAC277	42	441148	6547455	266	142	982	6	3	9
21SVAC278	26	441053	6547452	265	53	94	2	3	5
21SVAC279	23	440947	6547455	265	94	86	4	3	7
21SVAC280	35	442047	6547855	264	51	116	3	3	6
21SVAC281	24	441948	6547855	265	134	63	3	3	6
21SVAC282	46	441844	6547853	268	99	84	3	3	6
21SVAC283	46	441748	6547853	271	84	1600	6	3	9
21SVAC284	29	441653	6547851	273	126	44	6	3	9
21SVAC285	38	441549	6547851	273	58	166	5	6	11
21SVAC286	33	441447	6547855	274	107	155	1	3	4
21SVAC287	30	441348	6547855	276	51	50	3	3	6
21SVAC288	23	441248	6547855	278	181	73	6	16	22
21SVAC289	21	441146	6547853	279	345	278	12	16	28
21SVAC290	21	441045	6547882	279	23	74	3	3	6
21SVAC291	29	440948	6547855	278	79	100	2	3	5
21SVAC292	37	441948	6548145	266	25	1010	10	10	20
21SVAC293	24	441850	6548144	269	179	71	9	12	21

	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
Hole_ID	(m)	mE	mN	(m)	ppm	ppm	ppb	ppb	ppb
21SVAC294	20	441749	6548143	272	38	40	1	3	4
21SVAC295	24	441647	6548144	274	116	76	9	5	14
21SVAC296	18	441546	6548144	278	319	175	28	25	53
21SVAC297	19	441448	6548139	278	122	69	5	3	8
21SVAC298	20	441348	6548148	280	62	43	2	3	5
21SVAC299	26	441467	6547441	266	19	32	5	3	8
21SVAC300	28	441348	6547455	267	89	290	6	3	9
21SVAC301	27	438681	6545327	325	89	150	3	3	6
21SVAC302	30	438737	6545496	315	67	291	2	3	5
21SVAC303	25	438558	6545047	336	107	155	1	3	4
21SVAC304	24	438290	6544822	342	39	61	2	3	5
21SVAC305	12	438235	6544763	342	86	27	2	3	5
21SVAC306	22	438309	6545017	336	77	72	1	3	4
21SVAC307	6	438199	6545020	332	45	99	1	3	4
21SVAC308	2	438117	6545120	328	73	81	1	3	3
21SVAC309	47	437947	6545174	319	500	145	19	6	25
21SVAC310	36	437846	6545484	321	87	48	7	3	10
21SVAC311	32	437832	6544539	326	126	64	2	3	5
21SVAC312	27	437980	6544542	330	11	20	1	3	4
21SVAC313	20	438042	6544668	336	108	22	2	3	5
21SVAC314	18	438001	6544812	332	26	15	3	3	6
21SVAC315	24	438153	6544678	342	39	41	1	3	4
21SVAC316	34	437748	6544686	323	42	48	2	3	5
21SVAC317	36	437679	6544755	322	25	40	2	3	5
21SVAC318	34	437692	6544618	320	59	42	1	3	4
21SVAC319	31	437561	6544663	323	225	120	2	3	5
21SVAC320	45	437728	6544954	322	83	61	4	3	7
21SVAC321	59	437683	6545015	326	66	65	5	3	8
21SVAC322	55	437590	6545025	329	82	95	5	3	8
21SVAC323	38	437482	6545019	332	185	76	27	11	38
21SVAC324	52	437401	6545039	334	121	60	4	6	10
21SVAC325	42	437088	6545210	346	133	98	2	3	5
21SVAC326	30	437196	6545220	346	117	36	2	3	5
21SVAC327	32	437288	6545222	344	84	66	2	3	5
21SVAC328	31	437387	6545211	341	96	76	4	3	7
21SVAC329	32	437483	6545220	342	239	121	21	10	31
21SVAC330	36	437592	6545223	336	136	60	3	3	6
21SVAC331	43	437691	6545221	329	55	38	4	3	7
21SVAC332	39	437792	6545226	322	277	129	15	13	28
21SVAC333	22	437788	6545429	325	43	26	1	3	4
21SVAC334	39	437679	6545405	335	71	57	3	3	6
21SVAC335	28	437594	6545423	347	91	19	10	5	15

	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
Hole_ID	(m)	mE	mN	(m)	ppm	ppm	ppb	ppb	ppb
21SVAC336	10	437460	6545417	358	57	10	5	3	8
21SVAC337	23	437888	6545624	322	26	39	5	3	8
21SVAC338	23	437783	6545587	330	60	101	7	6	13
21SVAC339	16	437714	6545532	335	42	69	7	7	14
21SVAC340	16	437982	6545770	316	28	31	2	3	5
21SVAC341	15	437705	6545743	342	58	20	4	7	11
21SVAC342	13	437604	6545720	352	102	32	12	6	18
21SVAC343	20	437472	6545632	373	347	162	31	25	56
21SVAC344	5	437391	6545618	374	133	73	15	10	25
21SVAC345	27	437606	6546016	345	162	81	5	6	11
21SVAC346	25	437501	6546017	353	199	64	9	3	12
21SVAC347	35	437485	6545821	367	438	77	40	32	72
21SVAC348	14	437386	6545819	374	181	42	14	6	20
21SVAC349	10	437286	6545825	376	112	56	4	3	7
21SVAC350	25	437193	6545817	378	340	160	26	16	42
21SVAC351	41	437113	6545803	375	546	311	27	24	51
21SVAC352	12	437265	6545954	369	178	34	10	5	15
21SVAC353	27	437216	6545670	381	478	160	23	20	43
21SVAC354	26	437084	6545568	377	75	36	2	3	5
21SVAC355	22	437172	6545549	379	126	87	4	3	7
21SVAC356	50	436894	6545411	360	119	87	6	8	14
21SVAC357	40	436990	6545421	360	132	67	5	3	8
21SVAC358	25	437092	6545420	363	220	39	3	3	6
21SVAC359	33	437170	6545385	361	65	58	3	3	6
21SVAC360	29	437641	6546079	338	136	56	7	9	16
21SVAC361	16	437772	6546107	328	90	33	5	3	8
21SVAC362	30	437915	6546119	317	124	55	4	3	7
21SVAC363	16	438011	6546117	311	75	22	9	12	21
21SVAC364	34	438195	6546236	297	171	81	1	3	4
21SVAC365	24	438095	6546222	304	141	43	3	5	8
21SVAC366	18	438015	6546218	310	44	45	3	3	6
21SVAC367	20	437890	6546223	317	15	26	4	3	7
21SVAC368	15	437786	6546219	323	14	25	4	3	7
21SVAC369	15	437689	6546223	327	24	23	3	3	6
21SVAC370	26	437583	6546222	332	25	25	3	3	6
21SVAC371	24	437501	6546204	337	30	37	15	3	18
21SVAC372	25	437377	6546299	331	31	18	2	3	5
21SVAC373	27	437304	6546303	331	196	30	10	9	19
21SVAC374	25	437156	6546232	335	32	20	1	3	4
21SVAC375	27	437091	6546224	334	29	27	4	3	7
21SVAC376	36	437096	6546028	354	92	51	4	3	7
21SVAC377	39	436772	6546004	346	56	27	1	3	4

	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
Hole_ID	(m)	mE	mN	(m)			ppb	ppb	ppb
21SVAC378	22	436674	6546003	342	ppm 11	ppm 22	5	3	8 8
21SVAC379	29	436578	6546007	338	72	28	1	3	4
21SVAC379	30	436959	6546220	332	123	62	4	3	7
21SVAC360	45	436857	6546217	332	98	19	4	3	7
21SVAC381	33	436752	6546221	330	69	28	1	3	4
21SVAC302	24	436656	6546218	329	216	55	8	3	11
21SVAC383	30	436557	6546223	329	28	28	1	3	4
21SVAC304 21SVAC385	38	436639	6545856	351	103	25	1	3	3
21SVAC365 21SVAC386		436597	6545723	357	41	35	1	3	3 4
	45 35						-		
21SVAC387	35	436723	6545515 6545614	366	180	36	19	3	22
21SVAC388	22	436716		369	60	42	7		10
21SVAC389	37	436440	6545662	352	72	43	1	3	3
21SVAC390	18	436136	6545544	357	74	51	6	3	9
21SVAC391	15	436133	6545454	359	24	17	1	3	3
21SVAC392	17	436113	6545365	359	56	22	1	3	3
21SVAC393	30	435948	6545273	356	179	173	36	16	52
21SVAC394	24	436003	6545164	354	37	48	1	3	4
21SVAC395	11	435596	6545124	340	47	24	13	3	16
21SVAC396	20	435442	6544983	352	6	14	1	3	3
21SVAC397	19	435585	6544393	353	10	19	1	3	3
21SVAC398	31	435641	6544493	351	24	19	1	3	3
21SVAC399	25	435591	6544588	354	10	14	5	3	8
21SVAC400	16	435591	6544779	355	12	19	2	3	5
21SVAC401	14	435635	6544706	355	103	24	30	8	38
21SVAC402	19	435846	6544491	344	21	29	5	3	8
21SVAC403	19	435834	6544339	344	27	25	4	3	7
21SVAC404	25	435988	6544694	344	138	60	1	3	4
21SVAC405	18	436103	6544782	342	285	35	9	6	15
21SVAC406	19	436206	6544862	342	173	39	4	3	7
21SVAC407	20	436307	6544939	344	55	34	1	3	4
21SVAC408	12	436385	6544995	346	33	36	1	3	4
21SVAC409	40	436494	6545077	349	28	26	2	3	5
21SVAC410	25	436612	6545165	353	127	59	2	3	5
21SVAC411	30	436708	6545207	353	47	38	1	3	4
21SVAC412	32	436830	6545229	350	52	28	1	3	4
21SVAC413	21	436099	6544660	339	96	185	5	9	14
21SVAC414	38	437078	6544949	338	119	61	1	3	4
21SVAC415	28	437186	6544943	335	210	44	1	3	3
21SVAC416	30	437253	6544770	334	75	45	1	3	3
21SVAC417	35	437138	6544683	333	37	16	1	3	4
21SVAC418	32	436992	6544632	329	35	19	1	3	4
21SVAC419	30	436923	6544713	335	326	62	2	3	5

	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
Hole_ID	(m)	mE	mN	(m)	ppm	ppm	ppb	ppb	ppb
21SVAC420	18	436678	6544747	334	18	18	1	3	4
21SVAC421	17	436400	6544756	333	203	39	4	3	7
21SVAC422	25	436158	6544555	331	160	55	3	3	6
21SVAC423	29	436113	6544461	331	210	62	3	3	6
21SVAC424	20	436215	6544293	323	153	35	1	3	4
21SVAC425	33	436815	6544766	334	38	20	1	3	4
21SVAC426	29	439158	6545022	306	58	106	1	3	4
21SVAC427	26	439410	6544993	307	392	122	24	21	45
21SVAC428	35	439220	6544797	299	64	143	2	3	5
21SVAC429	14	439161	6544624	293	39	44	1	3	3
21SVAC430	24	439183	6544381	288	38	47	3	3	6
21SVAC431	7	439399	6545410	301	62	89	1	3	3
21SVAC432	13	439537	6545380	300	286	43	23	14	37
21SVAC433	10	439300	6545450	300	118	97	1	3	4
21SVAC434	17	439538	6545874	298	33	38	1	3	4
21SVAC435	32	439405	6545920	306	214	91	14	5	19
21SVAC436	19	439301	6545839	308	250	203	29	26	55
21SVAC437	34	439049	6545855	309	125	61	22	9	31
21SVAC438	27	439092	6546205	308	54	45	1	3	4
21SVAC439	13	439164	6546314	298	99	306	1	3	4
21SVAC440	12	439389	6546230	306	16	13	1	3	3
21SVAC441	28	439485	6546236	301	214	53	26	27	53
21SVAC442	19	438451	6550232	311	38	52	2	3	5
21SVAC443	22	438546	6550236	308	216	85	1	3	3
21SVAC444	43	438647	6550225	306	58	117	1	3	3
21SVAC445	34	438738	6550224	308	47	53	1	3	3
21SVAC446	36	438839	6550229	310	108	282	1	3	3
21SVAC447	29	438391	6550641	316	112	67	3	3	6
21SVAC448	32	438483	6550637	313	96	214	2	3	5
21SVAC449	30	438584	6550643	310	101	221	3	3	6
21SVAC450	18	438681	6550639	308	410	73	4	6	10
21SVAC451	24	438780	6550644	306	294	134	2	3	5
21SVAC452	17	438901	6550645	304	39	52	1	3	3
21SVAC453	10	439016	6550602	306	258	48	2	3	5
21SVAC454	25	439016	6550602	306	186	93	3	3	6
21SVAC455	17	439167	6550668	304	9	40	1	3	4
21SVAC456	30	439260	6550696	303	90	158	1	3	4
21SVAC457	27	439352	6550719	303	63	136	2	3	5
21SVAC458	24	438885	6550233	311	96	36	2	3	5
21SVAC459	32	438345	6550227	316	115	118	3	3	6
21SVAC460	17	438154	6550225	320	93	53	1	3	4
21SVAC461	21	437955	6550226	323	281	49	2	3	5

	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
Hole_ID	(m)	mE	mN	(m)	ppm	ppm	ppb	ppb	ppb
21SVAC462	32	438049	6550620	326	13	23	1	3	4
21SVAC463	32	438245	6550624	321	64	52	2	3	5
21SVAC464	49	437648	6551028	318	71	76	2	3	5
21SVAC465	55	437453	6551025	310	161	88	2	3	5
21SVAC466	48	437251	6551024	300	468	658	10	10	20
21SVAC467	35	437046	6551028	291	279	154	3	5	8
21SVAC468	9	436858	6551015	286	272	200	15	10	25
21SVAC469	21	436959	6550624	285	345	114	24	20	44
21SVAC470	32	437148	6550631	295	156	127	1	3	4
21SVAC471	18	437346	6550626	298	28	42	1	3	4
21SVAC472	3	437546	6550619	309	49	62	1	3	3
21SVAC473	11	437805	6550621	328	196	20	1	3	4
21SVAC474	32	437916	6550987	324	34	35	6	3	9
21SVAC475	17	438050	6551029	319	120	88	2	3	5
21SVAC476	27	438256	6551050	315	391	186	4	5	9
21SVAC477	37	437150	6550233	286	249	82	9	11	20
21SVAC478	21	437351	6550230	295	60	30	1	3	4
21SVAC479	9	437548	6550235	309	86	22	1	3	3
21SVAC480	6	437728	6550226	325	204	45	1	3	3
21SVAC481	15	440493	6548229	295	28	17	13	3	16
21SVAC482	10	440444	6548120	292	38	30	5	3	8
21SVAC483	30	440371	6548126	296	50	54	1	3	3
21SVAC484	33	440336	6547994	287	250	66	1	3	4
21SVAC485	9	440269	6548136	297	150	37	7	6	13
21SVAC486	20	440211	6548226	301	48	42	6	3	9
21SVAC487	15	440087	6548208	298	87	52	24	8	32
21SVAC488	6	440087	6548057	294	53	39	20	7	27
21SVAC489	9	440088	6547930	290	108	112	9	5	14
21SVAC490	12	440092	6547769	288	66	44	2	3	5
21SVAC491	28	440092	6547642	286	29	64	2	3	5
21SVAC492	25	440098	6547524	286	153	59	4	11	15
21SVAC493	20	440110	6547497	286	15	43	2	3	5
21SVAC494	13	440211	6547433	287	114	32	4	3	7
21SVAC495	12	440328	6547430	282	20	35	1	3	4
21SVAC496	27	440431	6547427	275	52	25	1	3	3
21SVAC497	23	440526	6547426	270	69	45	1	3	3
21SVAC498	35	440647	6547427	267	123	59	1	3	3
21SVAC499	19	440753	6547428	265	33	89	1	3	3
21SVAC500	30	440859	6547429	264	129	89	1	3	3
21SVAC501	21	440566	6546596	264	64	148	1	3	3
21SVAC502	31	440597	6546505	266	84	121	1	31	32
21SVAC503	32	440639	6546411	268	68	209	2	3	5

11 1 15	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
Hole_ID	(m)	mE	mN	(m)	ppm	ppm	ppb	ppb	ppb
21SVAC504	29	440683	6546317	270	60	85	1	3	3
21SVAC505	27	440723	6546226	272	94	60	1	3	3
21SVAC506	22	440761	6546134	273	87	52	1	3	3
21SVAC507	32	440802	6546040	276	125	65	1	3	3
21SVAC508	33	440845	6545937	278	33	59	1	3	3
21SVAC509	23	440911	6545861	279	67	81	3	6	9
21SVAC510	12	439044	6548209	275	16	29	1	3	4
21SVAC511	27	438972	6548333	277	96	49	1	3	4
21SVAC512	32	438682	6548688	279	51	57	1	3	4
21SVAC513	35	438361	6548941	281	253	239	1	3	4
21SVAC514	46	437115	6547690	311	94	43	1	3	4
21SVAC515	13	437274	6547588	301	120	61	1	3	4
21SVAC516	19	436642	6546685	319	46	69	1	3	3
21SVAC517	27	436729	6546861	315	33	65	1	3	4
21SVAC518	33	436804	6547028	314	67	31	1	3	4
21SVAC519	44	436870	6547163	312	136	88	1	3	4
21SVAC520	39	436957	6547347	309	259	112	1	3	4
21SVAC521	30	437034	6547516	310	91	31	1	3	4
21SVAC522	23	436550	6546513	322	50	26	1	3	4
21SVAC523	32	436710	6546507	318	203	35	2	3	5
21SVAC524	30	436851	6546508	316	120	45	2	3	5
21SVAC525	37	437034	6546509	315	96	58	2	3	5
21SVAC526	24	437171	6546508	312	137	50	2	3	5
21SVAC527	30	437380	6546503	309	93	49	3	3	6
21SVAC528	24	437434	6546501	308	257	70	19	25	44
21SVAC529	26	437581	6546513	305	153	57	2	3	5
21SVAC530	32	437728	6546492	306	17	26	1	3	4
21SVAC531	12	438894	6548101	283	78	36	1	3	4
21SVAC532	24	438950	6547671	285	57	59	1	3	4
21SVAC533	35	439032	6547447	279	85	89	4	3	7
21SVAC534	22	438645	6547392	304	15	34	1	3	4
21SVAC535	27	438720	6547735	306	54	39	1	3	4
21SVAC536	32	438642	6547543	309	26	29	2	3	5
21SVAC537	9	438572	6547232	296	41	7	12	3	15
21SVAC538	35	438378	6547363	292	30	31	2	3	5
21SVAC539	6	438246	6547532	293	59	36	1	3	4
21SVAC540	33	432250	6552620	338	19	15	1	3	4
21SVAC541	26	434850	6552630	343	115	101	3	3	6
21SVAC542	30	434452	6552625	339	61	56	1	3	4
21SVAC543	19	434447	6552428	333	18	31	1	3	4
21SVAC544	34	434236	6552325	321	88	101	2	3	5
21SVAC545	35	434447	6552033	315	19	23	3	3	6

Hole_ID	Depth	East	North	RL	Cu	Ni	Pd	Pt	Pd+Pt
HOIE_ID	(m)	mE	mN	(m)	ppm	ppm	ppb	ppb	ppb
21SVAC546	37	434769	6551800	319	466	1990	9	12	21
21SVAC547	31	434575	6552159	323	84	39	7	3	10
21SVAC548	20	434729	6552405	340	97	21	2	3	5
21SVAC549	33	434992	6552392	349	25	32	4	3	7
21SVAC550	51	435247	6552531	339	131	52	2	3	5
21SVAC551	51	435247	6552226	334	64	60	6	3	9
21SVAC552	40	435257	6552061	327	55	43	7	3	10
21SVAC553	24	435254	6552192	332	125	57	3	3	6
21SVAC554	35	435650	6552280	326	73	28	9	10	19
21SVAC555	36	435649	6552033	317	73	77	1	5	6
21SVAC556	32	435654	6551833	310	91	43	1	3	4
21SVAC557	27	436056	6551830	315	29	25	1	3	3
21SVAC558	27	436156	6552072	323	114	212	13	11	24
21SVAC559	11	436067	6552240	330	8	26	1	3	3
21SVAC560	36	434810	6552854	340	137	91	1	3	3
21SVAC561	44	434473	6552853	343	641	1590	6	7	13
21SVAC562	28	434403	6553272	321	147	113	1	3	3
21SVAC563	19	434495	6553064	335	114	48	1	3	4
21SVAC564	37	434310	6553478	317	197	75	1	3	3
21SVAC565	21	434810	6553083	334	28	42	1	3	4
21SVAC566	28	434966	6553211	326	70	32	2	3	5
21SVAC567	42	434894	6553475	317	221	59	10	8	18
21SVAC568	27	435701	6553468	307	191	318	3	3	6
21SVAC569	43	435248	6553339	317	41	48	1	3	3
21SVAC570	16	435271	6553091	321	179	82	1	3	4
21SVAC571	6	434769	6550145	311	99	43	6	7	13

- 1. Assay results represent the maximum assay value in the hole. Assays were typically collected as 4 metre composite samples from surface.
- 2. Pt+Pd ppb represents the maximum Pt and Pd assay in the hole combined.
- 3. All holes are vertical.

Appendix 2. Sovereign Prospect - JORC 2012 Table

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The Company drilled 318 holes for 8,456m on a nominal 200mx400m grid where there was no crop on paddocks and along paddock boundaries on 100m spacing where crop was present. Holes were drilled vertically. Drill samples were collected over 4 metre intervals and submitted to the laboratory for analysis. Single metre intervals were collected for bottom of hole samples. All drill hole collars and soil samples have been reported with coordinates in MGA94 grid system, Zone 50. Down hole surveys have not been taken as drill holes are shallow and were drilled vertically. Drill samples were collected at 1m intervals with a 4m composite taken using a sample spear. Composites were sent for analysis with 1m samples being retained for future assay. Drill and soil samples were submitted to ALS Laboratories in Perth, WA. Entire samples were crushed and pulverised to 85% passing <75um. Rocks were analysed for Cu and Ni with four acid digest ME-MS62 and with Au, Pt and Pd analysed by PGM-ICP23 fire assay 30g charge and ICP-AES finish. Bottom of hole samples were analysed by ME-MS61 for a 48 element suite.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	All drilling was undertaken using a KL150 air-core rig with a 3.5" drill bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All sample recoveries were assessed and recorded and considered when reviewing results. All drill samples were visually checked for recovery, moisture and contamination. It is not known if a relationship exists between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Geological recording of rock chip samples was on 1m intervals and included oxidation, lithologies, minerals, alteration styles and intensity, vein style and %. Logging was qualitative in nature. Photos were taken of the chip trays for each hole. Chip trays have been retained for review. A comment on nature of regolith and colour was made for each soil sample site.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No diamond core was drilled. All drill samples were collected at the drill rig. 4m composite samples were collected using a sample spear. Most samples were dry however those which were moist or wet were recorded as such. Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories. Entire samples were crushed and pulverised to 85% passing <75um. A standard and a duplicate inserted approximately every 40 samples for drilling and a standard or a duplicate inserted every 40 samples for soil sampling. Measures were taken include regular cleaning of cyclones and statistical comparison of field duplicates and standards. Drill sample size of 2-3kg is consistent with industry standards.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Drill samples were submitted to ALS Laboratories in Perth, WA. Entire samples were crushed and pulverised to 85% passing <75um. Composite samples were analysed for Cu and Ni with four acid digest ME-MS62 and with Au, Pt and Pd analysed by PGM-ICP23 fire assay 30g charge and ICP-AES finish. Bottom of hole samples were analysed for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr, Dy, Er, Eu, Gd, Ho, Lu, Nd, Pr, Sm, Tb, Tm, Yb by ME-MS61. Results are considered to be near total. A standard and a duplicate were inserted approximately every 40 samples for drilling and a standard or a duplicate inserted every 40 samples for soil sampling. Laboratory checks were also carried out. All QAQC was checked for accuracy.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Results are from reconnaissance aircore drilling and no significant intercepts have been reported. High copper, nickel values were verified with a handheld XRF and visual observations including in some instances in petrology. No twin holes were drilled. All drilling data is collected in the field using data collection software which is validated prior to being entered into an Access database. Data is exported from Access for processing and analysis using a variety of software packages. Chip-tray samples were collected as permanent physical records for audit and validation purposes, and all holes photographed for future reference. No adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	No Mineral Resource is being considered in this report. Drill collars and soil sample sites were located in UTM, MGA94, Zone 50 co-ordinates using a handheld GPS. Topographic surface based on Landgate topography series containing 5m contour data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No Mineral Resource is being considered in this report. Holes were drilled to achieve regional coverage. Holes were drilled on a nominal 200mx400m grid were there was no crop on paddocks and along paddock boundaries on 100m spacing where crop was present. Drill samples were taken at 4m composite intervals which were composited from 1m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill holes were drilled vertical to intersect basement geology as efficiently as possible. The orientation of target structures below this horizon is not known. Drilling is broad spaced and the orientations of primary mineralisation is currently unknown.
Sample security	The measures taken to ensure sample security.	Chain of custody for drill and soil samples was managed and delivered by the Company's personnel to ALS Laboratories in Perth, WA.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Company has an Earn-In Agreement with Australian Silica Quartz Group Ltd (ASQ) for granted tenement E70/3405. Under the Earn-In Agreement with ASQ, DevEx has the right to earn a 50% interest in all mineral and metal rights, excluding bauxite, within the ASQ Tenement by spending up to \$3 million within 3 years from commencement of the Earn-In Agreement. This includes a minimum expenditure requirement of \$250,000 in the first 12 months which has been met. DevEx can earn an additional 20%, taking its interest to 70%, by spending an additional \$3 million within two years if ASQ elect to not contribute to exploration expenditure after DevEx earning the 50% interest. Within E70/3405, land access agreements with land owners are in place and cover the main targets that lie within this tenement. The Company is exploring the tenement under land access agreements with the landowner. Some properties on E70/5365 are classified as "Minerals to Owner" under a prior pre-1899 provision where gold, silver and precious metals are reserved for the Crown, with all other metals assigned to the property. On both property types, where exploration is taking place, the Company has land access agreements with the landholder giving the Company the exclusive right to explore the Tenement over that land. Tenement E70/5365 lies adjacent to the ASQ Tenement E70/3405 and is 100% held by the Company. Access agreements are in place where work has been carried out and the Company is in the process of negotiating for further access elsewhere within the tenement. Both tenements lie on broad acre farm land which follow the WA crop and harvesting cycle. The Company has signed a Noongar Standard Heritage Agreement (NSHA) with the Yued People for E70/5365, this sets a notification framework for exploration activities to the Yued People and methodology for a heritage survey if required.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Apart from bauxite exploration carried out by ASQ (see the Company announcement on 19th August 2020) no other material exploration has taken place at the Sovereign Project. A published paper by Harrison (1984) documents the mineral potential of layered igneous complexes within the Western Gneiss Terrain – The paper identified a sequence of magnetic features prospective for Ni-Cu-PGE deposits on the western side of its Figure which it terms the Julimar Complex – The Sovereign Project forms one of these magnetic features
Geology	Deposit type, geological setting and style of mineralisation.	The Sovereign Project and other Company Tenement Applications are located within the Western Gneiss Terrain of the Archaean Yilgarn Craton of southwest Australia. The prospective areas are described in Harrison (1984) as within the "Julimar Complex", a series north-trending magnetic anomalies in the western part of the Jimperding Metamorphic Belt that contains mineralised prospects. The Company has interpreted the outline shape of "Julimar Complex" based on this description. The Complex comprises layered basic/ultramafic intrusions prospective for nickel sulphide related mineralisation. The Chalice discovery within the Complex adds significant support for the overall prospectivity of the Complex.

Criteria	JORC Code explanation	Commentary
		 Within the Sovereign Project, local geology is masked by extensive laterite cover, predominately bauxite or lateritic duricrust. The Company have mapped and interpreted a differentiated mafic-ultramafic intrusion within the Sovereign Project area, based on geological observations from air-core drilling, bottom of air-core hole multielement geochemistry, petrology and interpretation from previous airborne magnetics and gravity surveys. These information sources identify the metamorphic equivalent of sequence ranging from leucogabbros, to mela-norites, gabbronorites and olivine websterite (pyroxenite) ultramafics which support the concept of a differentiated mafic-ultramafic intrusion. Further detailed petrology of selective samples is ongoing. Surrounding and within the mafic-ultramafic intrusion are varied country rocks including granodiorite, felsic gneiss, quartzite, intermediate gneiss rocks. Several east-west faults are interpreted to dislocate the intrusion. This may be exposing the gabbronorite and pyroxenite rocks which appear to lie beneath the gabbro. Proterozoic dykes also intrude both the country rock and the mafic-ultramafic intrusion. Petrology recognises significant metamorphism of the intrusion and the Company interprets that the mafic-ultramafic intrusion is Archaean.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Results from the Company drilling is presented in the Figures of this report with a drill hole summary and maximum values included in the Appendix of this report. Holes are typically broad spaced, shallow (average 25m) and assays are collected as 4m composites – maximum values are reported per hole to provide context to the spatial distribution of metals associated with the mafic-ultramafic intrusion.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No intercepts are reported. Values reported within this report from air-core drilling represent maximum values recorded per hole from analysis of composite samples (~4m). No high grade intercepts are discussed within this report. No metal equivalents are reported in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Drilling is shallow and vertical. No mineralisation widths or intercept width are reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading	Maximum assay results for recent drilling is reported in the Appendix, and all air-core holes are shown on the attached figure.

Criteria	JORC Code explanation	Commentary
	reporting of Exploration Results.	This report presents a solid geology interpretation of the mafic-ultramafic intrusive rocks within the Sovereign Project as defined from the geological logging of broad spaced air- core drilling.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The information presented in this report displays regional open file magnetics RTP and first vertical derivative (1VD) to provide context to various magnetic anomalies within the region.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Planning is now underway for an extensive ground EM survey to commence next month. The survey is designed to test for conductors associated with Ni-Cu-PGE mineralisation beneath the effective range of the previous Airborne EM and overlying gabbroic rocks.
		As the survey is likely to take several months to complete, priority will be given to several areas where the lower pyroxenite and melagabbronorites have been exposed near surface. Prospective EM conductors identified as this survey progresses will be fast tracked to diamond drilling.
		In conjunction with these ground EM surveys, diamond drilling is also planned to test the geometry and extent of the intrusion beneath the upper gabbroic rocks.
		This planning will be supported by additional modelling of the regional gravity data.
		Results, and a more enhanced geological understanding, are expected to assist with definition of priority targets within the broader differentiated mafic-ultramafic intrusion which will pave the way for an expanded ground electromagnetic (EM) survey and subsequent RC/diamond drilling in the coming months.